If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(G)=G^2+15G-54
We move all terms to the left:
(G)-(G^2+15G-54)=0
We get rid of parentheses
-G^2+G-15G+54=0
We add all the numbers together, and all the variables
-1G^2-14G+54=0
a = -1; b = -14; c = +54;
Δ = b2-4ac
Δ = -142-4·(-1)·54
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{103}}{2*-1}=\frac{14-2\sqrt{103}}{-2} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{103}}{2*-1}=\frac{14+2\sqrt{103}}{-2} $
| -3/4f=5/5 | | 20+30+x=90 | | 3b+12=2b+42 | | 2(y-4)=9 | | 5a-15=6a-25 | | 10/4+3/56=x | | 2.6x-5.86=3.5 | | Y=8x+2x | | 2x^2-18x=-39 | | 20+2x=20+2x | | -9.5x+0.57=-7.03 | | 109x+49x=180 | | 3x^2+5=-145 | | -7+7x=6x-9 | | -2,4(7-9y)=-48 | | 75x+40x=180 | | 3x/7-11=12 | | 4x+1=28-5x | | 0,8(4x+5)=-3,2 | | 2x/3-8/3=1 | | (2a-3)=(5a+1) | | x+10+7x+10=180 | | −4a−7=5 | | -3(4-5y)+2(3-6y)=-3,9 | | 6+√x-4=10 | | x-7=-6x+56 | | 48=1/2(x+64) | | 1+2k=3k-3 | | 58=9t-5 | | 6x+6=-8-x | | (6x+8)=(2x+2)=90 | | k+2=0 |